Evidence of Selection upon Genomic GC-Content in Bacteria
نویسندگان
چکیده
The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC→AT mutations over AT→GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We show that the excess of GC→AT mutations is inconsistent with mutation bias, since it would imply that most GC-rich bacteria are declining in GC-content; such a pattern would be unsustainable. We also show that the patterns are probably not due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich, and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination. We therefore conclude that there is selection to increase synonymous GC-content in many species. Since synonymous GC-content is highly correlated to genomic GC-content, we further conclude that there is selection on genomic base composition in many bacteria.
منابع مشابه
Evidence of Selection upon Genomic GC-Content in
The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GCRAT mutations over ATRGC mutations segregating ...
متن کاملAcross Bacterial Phyla, Distantly-Related Genomes with Similar Genomic GC Content Have Similar Patterns of Amino Acid Usage
The GC content of bacterial genomes ranges from 16% to 75% and wide ranges of genomic GC content are observed within many bacterial phyla, including both gram negative and gram positive phyla. Thus, divergent genomic GC content has evolved repeatedly in widely separated bacterial taxa. Since genomic GC content influences codon usage, we examined codon usage patterns and predicted protein amino ...
متن کاملAn AT Mutational Bias in the Tiny GC-Rich Endosymbiont Genome of Hodgkinia
The fractional guanine + cytosine (GC) contents of sequenced bacterial genomes range from 13% to 75%. Despite several decades of research aimed at understanding this wide variation, the forces controlling GC content are not well understood. Recent work has suggested that a universal adenine + thymine (AT) mutational bias exists in all bacteria and that the elevated GC contents found in some bac...
متن کاملEvidence That Mutation Is Universally Biased towards AT in Bacteria
Mutation is the engine that drives evolution and adaptation forward in that it generates the variation on which natural selection acts. Mutation is a random process that nevertheless occurs according to certain biases. Elucidating mutational biases and the way they vary across species and within genomes is crucial to understanding evolution and adaptation. Here we demonstrate that clonal pathog...
متن کاملGC - content evolution in bacterial genomes : the biased gene conversion
20. CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. Abstract The characterization of functional elements in genomes relies on the identification of the footprints of natural selection. In this quest, taking into account neutral evolutionary processes 25 such as mutation and genetic dri...
متن کامل